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Abstract

We construct a weak formulation of the wave equation in curved spacetime for
solutions which are regularly discontinuous across a hypersurface. We adopt
the framework of distributions and tensor-distributions, and allow the presence
of discontinuity for the first and second derivatives of the spacetime metric. We
thus find the corresponding compatibility conditions to hold at the interface,
as replacement for the differential equation, which is undefined there. In
particular, we find out that if discontinuity of the first derivatives of the metric is
present, such compatibility conditions also involve the mean values of the field,
and not only its jump across the discontinuity hypersurface. We also consider
the case of singular solutions with support on a hypersurface, and derive the
corresponding compatibility conditions. Applications to electromagnetism are
presented.

PACS numbers: 04.30.Nk, 04.40.Nr, 03.65.Pm

1. Introduction

The wave operator over a pseudo-Riemannian manifold and for a generic tensor was defined
by Lichnerowicz in [1], with the name of generalized Laplace operator, generalizing the
analogous definition of de Rham, which instead applies only to antisymmetric tensors [2].
The generalized Laplace operator reduces to the usual D’ Alembert operator only for ordinary
functions and in a flat spacetime.

In this paper, we consider the problem of matching two solutions of the wave equation
across a discontinuity hypersurface ¥ of the spacetime. To study this problem, one has
to introduce some compatibility conditions in order to replace the wave equation on the
hypersurface, where it is not defined. The set given by the ordinary wave equation, to hold
at each side of X, plus compatibility conditions to hold on the hypersurface, defines a weak
solution of the wave equation, in a sense which depends on the choice of the compatibility
conditions [3].
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The theory of distributions and tensor-distributions [1, 4] provides a general method to
define, in an axiomatic way, tensor weak solutions of arbitrary differential equations which are
regularly discontinuous [5]. In the general case, it suffices in fact to replace the discontinuous
fields with the corresponding integrable distributions and to interpret the differential operators
contained in the field equations in the sense of distributions. In the case of the wave equation,
for example, we find that the corresponding distributional equation is equivalent to the ordinary
one on each side of the discontinuity hypersurface, plus some compatibility conditions to hold
at the interface, i.e. exactly what we were looking for to define weak solutions of the wave
equation. Lichnerowicz’s framework permits us to use a very general ambient spacetime,
where the eventual presence of discontinuity for the first and second derivatives of the metric
(i.e. gravitational waves and shock waves) is allowed [4]. Such generalization is important,
since it turns out that the characteristic hypersurfaces of the wave equation are the same as
those of the Einstein equations, i.e. lightlike hypersurfaces; thus discontinuity for a solution
of the wave equation and for the spacetime metric can coexist. In case discontinuity of the
first derivatives of the metric is present, compatibility conditions for the solutions of the wave
equation turn out to involve the curvature tensor-distribution, the jump of the field, and also
its arithmetic mean (theorem 1).

Weak solutions in the sense of distributions then lead in a natural way to a further
generalization, corresponding to solutions of the wave equation with support on a singular
hypersurface. Also in this case we can find the corresponding compatibility conditions for the
singular component of the field (theorem 2).

The framework of electromagnetism (section 6) permits us to successfully test the method
and then to apply it to a series of problems involving discontinuous and singular charge-current
distributions.

2. Discontinuous fields and distributions in curved spacetime

2.1. The curved spacetime

Let V4 be the spacetime of general relativity, i.e. an oriented differentiable manifold of
dimension 4, class (C', piecewise C?), provided with a strictly hyperbolic metric of signature
— — +++ and class (C°, piecewise C?); let us denote with Napys the unit volume 4-form
which orients the spacetime and V the associated covariant derivative. Let 2 C V,4 be an open
connected subset with compact closure. Let units be chosen in order to have the speed of light
in empty space ¢ = 1. Greek indices run from O to 3; Latin indices run from 1 to 3.

The Riemann curvature tensor R is defined by the Ricci formula:

(VgVy — Vo V) V7 = Ryp," VP, (1)

The symmetric Ricci tensor is here defined by Rg, = R,p,° and the curvature scalar by
R = R,%; the Einstein tensor is Gy = Ryp — (1/2)Rgug.

For an introduction to Einstein’s theory of gravitation in terms of local differential
geometry, see, e.g., [6-8].

2.2. Regularly discontinuous fields

Let us recall some general properties of regularly discontinuous functions and tensors (for
details see, e.g., [9—12]).

Let ¥ C Q be a regular hypersurface of equation f(x) = 0; let f have non-vanishing
gradient on X. Let Q* and 2~ denote the subdomains distinguished by the sign of f.
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A field ¢ is said to be regularly discontinuous on ¥ if there exist a pair of regular
functions ®*, ®~ € C*(Q) (k > 0) such that their restrictions to the two subdomains * and
Q7 respectively, coincide with those of ¢:

plor = *g-, Ylo- =P |a-.
If ¢ is regularly discontinuous, its restrictions have a finite limit ¢* for f — 0%, the limit
being independent of the choice of the path approaching any given x € X. Then its jump
[¢] = ¢* — ¢~ across X and its arithmetic mean value ¢ = (¢* + ¢~)/2 are well defined. In
the particular case when ¢ is continuous across X, we obviously have [¢] = 0,9 = ¢|x.

Let the first and second partial derivatives of the metric be regularly discontinuous on
. Let f € C'(Q) N C3(R\X), and let second and third derivatives of f be regularly
discontinuous on X. Finally, let £, = 9, f denote the gradient of f. We have £ # 0 for any
x € X.

It is easy to check that the jump of the product of two functions ¢ and i obeys the
following useful formula:

loy] =[]y +o[V]. 2
The jump of a regularly discontinuous function has support on X, but it can be extended
off ¥ for operational reasons, with the help of regular prolongations; by definition a regular
prolongation of [¢] in © is ®* — ®~, and any function which coincides on X with ®* — &~
is also an admissible regular prolongation of [¢]. Clearly, only the restriction to X of the
prolonged jump is independent of the prolongation.

Similar, if £ > 0, and if the derivatives of ¢ up to order k are also regularly discontinuous,
an admissible regular prolongation must have derivatives which coincide on ¥ with those of
®* — ®~. Thus it is rather natural to define the partial derivative of the jump as the jump
of the partial derivative of the function (see [11, 12]), which in practice coincides with the
restriction to X of the derivative of any prolonged jump. This permits us to handle derivatives
of objects of the kind [¢]8, where § is a singular distribution, in a compatible way, as we will
see. In particular, with this definition the derivative of the jump of a continuous field is not
null, unless the field is also C' (while a derivative tangent to ¥, which is effected only by the
restriction to X of a field, is instead obviously null when applied to the jump of a continuous
field).

Similarly, we can define in an invariant way on X the partial derivative of the mean value
of a function as the mean value of the partial derivative. More generally, here we define the
partial derivative of the restriction to ¥ of a given regular field as the restriction of the partial
derivative of the field.

Finally, we define the covariant derivative of the jump of a regularly discontinuous field
by means of the mean value Fﬁp" of the Christoffel symbols which, with our continuity
assumptions on the metric, are regularly discontinuous on ¥. For the jump of a regularly
discontinuous vector, for example, with this definition one has that the jump of the covariant
derivative is different than the covariant derivative of the jump. By (2) in fact we have

Vel VA1 = [0, VP14 Too V] = [Vo VA1 = [T TV, 3)
and similarly for the jump of a regularly discontinuous tensor.

The covariant derivative of the restriction to X of a given regular tensor field is defined in
the same way, i.e. by means of I'.

2.3. Distributions and tensor-distributions

Let us recall the basic properties of distributions and tensor-distributions; for complete details
see, e.g., [1, 4, 10, 13].
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Let {x*},« = 0, 1, 2, 3, be a local chart of domain Q2 C V,. Let (T, U)(x) denote the
scalar product with respect to the metric g of the spacetime of two p-tensors T and U at the
point x € Vjy; in the domain 2 we have

(T, U)(x) = (Taya, U 77) (), (x € Q). 4)

Let us define integration over V; by means of the natural volume element 1 of the manifold;
locally, we have

nla = Igldx® Adx! Ao Ady?, (5)

and the integral of a summable function f is
[ = rome. ©
Vi Vy

Let D?(Vy) be the space of p-tensors U of V, of class C¥, k > 2, and with compact support
S(U). If T is a locally integrable p-tensor over V4, i.e. if (T, U) is integrable for any
U € D?(Vy), then we define

(r,u)=| (T,U). (7
Vy

A p-tensor-distribution T of Vj is by definition a continuous linear form, with scalar values,
over D?(V,). Here continuity is intended in the following sense (see, e.g., [1, 4, 13]): given
a compact set K, consider a sequence U;,i = 1, 2, ... of elements of D? (V) with supports
S(U;) C K, such that U; and their derivatives of order <k converge uniformly to O for
i —> oo; T is continuous if 7 (U;) — 0 for all these sequences, the support belonging to an
arbitrary compact K.

Locally, in the domain 2 of a local chart, a generic p-tensor-distribution T in €2 has
components Ty, ...q, which are scalar-distributions in £2; conversely, given, over €2, n? scalar-
distributions Ty, ..., they define a p-tensor-distribution T in a unique way (see [1, 4]).

The support of a tensor-distribution on Vj is the smallest closed set S in V4 outside which
T is identically zero (i.e., it is zero for all test tensors with support outside S).

A locally summable p-tensor V defines in a natural way an associated distribution V?:

VPWw) = (v,U), U € DP(Vy). 8

Distributions and tensor-distributions which can be constructed this way are called regular,
or integrable; those which cannot, are called singular. Since the space of tensor-distributions
includes integrable and singular tensor-distributions, it obviously is an extension of the space of
ordinary locally integrable tensors (which instead correspond to integrable tensor-distributions
only).

Given a scalar-distribution u and a p-tensor V of class C", their product is the p-tensor-
distribution defined by

@V)W) = (Vu)(U) = u((V,U)), U € D*(Vy). €))

The covariant derivative of a p-tensor-distribution T is the (p + 1)-tensor-distribution defined
by

(VT)(U) =-T[DivU), (10)
where (Div U)® % = VzUP* " With the definition above, the classical properties of the

covariant derivative hold also for tensor-distributions. Moreover, with definitions (9) and (10)
the usual chain rule for the derivation of a product holds.
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2.4. Distributions associated with a hypersurface

Let us restrict ourselves to a contractile domain 2 C V,, with compact closure, divided by
¥ into two subdomains Q3. and Q§, corresponding respectively to f > 0 and f < 0. Let
Xy (respectively xy ) be the function over €2 that is equal to 1 (respectively 0) over Q% and
to O (respectively 1) over Q3. These functions define in a natural way over Q2 a pair of
scalar-distributions, again denoted as 5. and x5, by means of the following formulae:

x§<<p>=/ x§¢=/ ?, ¢ € DUQ). (11)
Q Q%

One can introduce the so-called class of Leray of n-forms associated with f [1, 4], i.e. the
n-forms w such that

n=4L4Aw. (12)
It can be shown [1, 4] that for ¢ € D°(Q) the integral

/ pw = —/ 0 (13)
Flos Q%

has a value independent of the choice of w satisfying (12). This leads to the following definition
of hypersurface integral,

/fﬂ = i/ pw, (14)
b 0Qf

which is independent of the signature or the eventually degenerate kind of ¥. Note that in a
chart adapted to X, i.e. with coordinates x* such that x° = f and thus £, = §,%, one has that
the form

o =+/|gldx! A dx? Adx? (15)

is associated with f in the sense of Leray, as one would expect.
The Dirac measure distribution associated with X is the distribution §y defined by

S5 (p) = /E ?, ¢ € D'(Q) (16)

where Jy is a singular distribution and has support over X.
As for the derivative of 8y, it is possible to prove [1, 4] that there is another distribution
with support on X, usually denoted as 8%, such that

Vs = 08}, (17)

In adapted coordinates one simply has 85 = V(dx.

A very useful property, which as yet seems to have been neglected in the literature, is that
8z and 8% are independent distributions in the sense that if a distribution is defined by means
of a linear combination of §x and 8%, such a combination is unique. To see this, let us consider
adapted coordinates; if y is a regular function of class C h(Q), h > 2, we have

yéy =0 <<= vy|x=0. (18)
In fact y 85 = 0 means [, y¢ for any test function ¢ € D°(R2). We similarly have
yéy =0 <= ylz=Voy)lz=0. 19)

In fact 85 (¢) = —8=(Voy @ + ¥ Vop), and again, by the arbitrariness of ¢ we obtain (19) (it
suffices to consider the class of test functions ¢ such that ¢|x = 0 and then those such that
Vopls = 0). Clearly, the hypothesis ¥ € C"(2) can be replaced with y to be of class C"
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in some neighbourhood of X, so that the values on ¥ of y are well defined. Now consider a
distribution F' given by a linear combination of the following kind,

F = yé8s + B85, (20)
where y, 8 € Ch(Q). Then, we have
F=0 <= ylz=8lx=0. 21

In fact by definition we have

Flg) = /E (7 — YoB)o — BVo9). 22)

Thus again by arbitrariness of ¢ if F = 0 we necessarily have 8|y = 0. We consequently
have F = ydéy = 0 and thus y |y = 0. In particular, it then follows that if a distribution F is
given by an expression of the kind (20), such an expression is unique (on X).

If T is a locally summable tensor, regularly discontinuous across X, the associated tensor-
distribution T has the following form,

TP = Txi+Txy, (23)

and one finds out (see [1, 4]) that the derivative of the associated tensor-distribution 7? is
different from the tensor-distribution associated with the derivative of T; in fact we have

V(T?) = (VTP +£ @ [T 8%, (24)

where [T] denotes the jump of T across X. Clearly, if T is regular, i.e. [T] = 0, we have
V(TP) = (VT)P.

Formula (24) can be iterated at any order, even if £ is only C! and [T] is only well defined
on ¥, by means of the method of regular prolongation and the consequent identification:
Val[VeT] = [V4£VpT] for each pair of multi-indices A = «;-- -, and B = B;--- B,
[11, 12]; it suffices to suppose that f (and consequently £) is just regularly discontinuous, at
any order of derivation, across X.

In the following, we will sometimes have to differentiate a product of the kind §y times
a jump. This simply obeys the ordinary chain rule, thanks to our definition of covariant
derivative on X (section 2.2). To see this, consider the tensor-distribution V, (65[Vg]) over a
test tensor U*?. By definition of derivative of a distribution and of product between a function
and a distribution, one has

Vo @ [VeD(U*) = =85 ([V51V, U*P) 25)

where, since §y has support on X, V, U @ is restricted to T, i.e. it is defined by means of the
mean values of the Christoffel symbols. One then has

[VsIVe U = [V51(3, U + T, U + T, " UYF)
= [0, (VsU*P)] — U*P[3, V5] + T o, *[V51U" + T, P[Ve1U®

= [Va (VU] = [T ]V U — U ([Va Vg1 + [Tap”]V o) (26)
which, by (3), is equal to
Vol VU] = UV, [Vp] 27)
and since 85 (V,[VsUP]) is equal to —(V,85)([Vs]U*?), one concludes that
Va(85[Vp]) = [V51Vabs + Vol Vslox (28)

as wished.
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2.5. Curvature tensor-distribution

Let us now introduce Lichnerowicz’s curvature tensor-distribution Qugpo »

Qaﬁpd = (RaﬂpU)D + Haﬁpa 82 (29)
where the singular component is defined as follows:
Haﬂpa = Eﬁ [Fapa] - ga[rﬁpo]- (30)

The Christoffel symbols, under a generic regular coordinate change, transform according to
the following non-tensorial law,

o ax 9xP 9x° 9%x% 9x°

Ieg’ =Tpp® — - + - 31
P P oxe gxB 9x0” " 9x@axP ax° D
therefore, if we allow C? coordinate changes, we have
1 0xY AxP 9x
Ly, 7= Lo 7 P 7 32
[ B ] [ B ]axa axﬂ 8.)(0- ( )

i.e. the jump of the Christoffel symbols defines a tensor with support on X. Consequently,
Hyp,s 18 also a tensor with support on X, and therefore Qgg,, is a tensor-distribution. The
role of the singular component Hg,, is to characterize gravitational shocks: in fact, such
tensor vanishes if and only if the metric is C ! across ¥; moreover, it follows from the weak
formulation of the Einstein equations that its trace Hg, = Hyg,* necessarily vanishes unless
the stress—energy content of the spacetime admits a singular component concentrated on
¥ [4,5].

The curvature tensor-distribution (29) clearly satisfies the typical algebraic properties of
a curvature tensor. As for the Ricci differential identities, it is possible to prove that they hold
in the sense of distributions, i.e. for a regularly discontinuous vector we have (see [5] p 1511)

o o D oY/
2VisVa (V)P = (Rup," V)" + 85 Hup, " V", (33)
which, for a regular vector, reduces to
2VigVa (V)P = Qup," V7. (34)

Moreover, it is possible to see that the Bianchi differential identities also hold, provided our
definition (3) of covariant derivative on X is used for the tensor [Fap"] (see [5], theorem 6):

V[oz Qﬁp]av = 0. (35)

3. The wave operator in a curved spacetime

For a tensor T of order p, the (generalized) Laplace operator is defined by (see, e.g., [14] and,
with a different signature, [1] and [4] p 243)

P P
(AT)ayey = ViV Ty ¥ Y Royp Ty ey ¥ Y Reypoo Ty’ (36)
k=0 k=1,k#l

where in the second term on the right-hand side p is at the kth place, while in the third term p
and o are at the kth and /th place, respectively.
For example, for a scalar u, a vector V and 2-tensor T, we have, respectively,

Au=V,V*u
(AV)y = V, VPV, + RV, (37)
(AT)op = V,VP T + Ry Ty + R* Ty, + 2R P TH.
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Operator (36) reduces to the de Rham Laplacian [2] for antisymmetric tensors (see [1]). The
following equivalent definitions for vectors and 2-tensors, in terms of commutators, are useful:

(AV)e =V, VPVy + (Vo V, =V, V) V7

(AT)ap = Vo VPTup + (Vo Vo = Vo V)T g+ (VgVe — Vo V) T,°.

A is a linear hyperbolic and self-adjoint operator (see [1, 16]) and corresponds, but for an
inessential factor —1, to the ordinary D’ Alembert operator or wave operator [J = 92 — §'¥9; 9,
for an ordinary function and in a flat spacetime.

Let us now consider the distribution u? associated with a regularly discontinuous function
u. We can very easily extend the definition of the wave operator to such a field; it suffices to
interpret the differential operators contained in (37) in the sense of distributions. We know
how to handle such derivatives of u?, thanks to (24); we have

(38)

AuP =V, VPuP = V,(VPu)P + £ [u]sy), 39
and, by further application of (24) we obtain

Au® = (Au)P + (L [V,ul + V,([ul€”))85 + (€ - O)[uldy. (40)
For a regularly discontinuous vector field V, from (24) we have
V,oVe(Va)? = (V,V V)P + (£,[VE Vel + YV, ([Va1€5))85 + £,€5[ V185 41)

Thus from the definition in terms of commutators (38) we find
A(Ve)? = (AVe)P + (P [V, Vel + Vo ([Val€9))S5
+ (U ([Vo VP = Vo [VPD +£,(Vo [V = [Va VD)5 + (£ - O[Va1dy.  (42)

Now, from (3) we have

[V,VP] =V, [V’ = [T, V", Vol VP] = [Vo VPl = —[Teo”1V", 43)
and consequently, by (30),

L[V, VP = Vo [VPD) + L, (Ve[VP] = [Vo VP]) = Hoo V', (44)
where Hy; = H,s”. Thus equation (42) finally turns into
A(V)P = (AV)P + €[V, Vol + V([Val€P) + Hao V)85 + (€ - O)[ V185 (45)

Similarly, in the case of a regularly discontinuous 2-tensor field 7,5, we have
A(Typ)? = (ATup)” + (0°[V,, Topl + V, ([Tup " D)5 + (La ([Vo T ] — Vo [T ])
+Lo(Va[T75] = [VaT6]))8x + (¢o ([Ve Ta"] = [V5Tu"])
+([VoTu”] = Vo[Tu7]))85 + (€ - O[Tup185, (46)
and again by (3) and (30) we, in the end, find
A(Typ)? = (ATup)” + (€[, Tupl + V, ([T £"1))Sx
+(Ho, T p+ HpoTo" + 2Hoops T )85 + (€ - )[Top18%. (47)

We have examined the particularly significant cases of functions, vectors and 2-tensors; from
the definition in terms of commutators (38) it follows that due to (33) it suffices to replace R
by Q in definition (37). Therefore for a generic p-tensor T from (36) in the end we find

A(Tya))” = (ATur0,))” + €[V Tar oy ] + Vo ([Tarr, €°])) 5

14
+ Y HupooTay’ " a5+ Y HyuTay b, 85 + (€ ) Ty, ]85
k=1,ks£l k=0

(48)
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The difference with the simple covariant generalization of the D’ Alembert operator V*V,, is
in the term involving the singular component of curvature distribution H; in fact we have

VY (Tara))” = (ATura))” 4 ([ V) Ty ] + Vo ([T, €°]))85 + (€ - O[Ty, |85
(49)

Thus, different from V*V,, the generalized Laplace operator A in practice lets the singular
structure of the spacetime be involved in the compatibility conditions for weak and singular
solutions of the wave equation, as we will see in the following.

4. Weak solutions of the wave equation

Let u be a regularly discontinuous function. We define u as a weak solution of the wave
equation if the equation holds for u?, provided the differential operators are interpreted in the
sense of distributions, i.e. if we have

AuP =0. (50)
By (40) we know that this equation is equivalent to
(Aw)? + (P [V, ul + YV, ([u]€”))8s + (£ - O)[ulsy, = 0. (51)

However, from (51) it follows (Au)? = 0 (to see this it suffices to consider separately the set
of test functions with support K C 2\ X); consequently, from the properties of independence
of 8y and &%, (see section 2.4) the weak equation (50) is actually equivalent to the following
set:

(Auw)? =0, LP[V,ul + Vo ([ult?) =0, «-Ou]l =0. (52)

Equation (Au)? = 0 is simply equivalent to the ordinary wave equation to hold on each side
of 2, separately (to see this, it suffices to consider the class of test functions with support
K C @~ and then those with support K C Q); the further two conditions are actually
compatibility conditions which must hold on ¥. Thus a regularly discontinuous function u
is a weak solution of the wave equation if and only if it is a solution on each side of the
discontinuity hypersurface and, moreover, we have

C[Voul +Vo(ult?) =0 (53)

and (¢ - £)[u] = 0. In a similar way, if we define a regularly discontinuous vector V as a weak
solution of the wave equation by AV? = 0, then from (45) we find that V is a weak solution
if and only if it is a solution on each side of the discontinuity hypersurface and the following
compatibility condition holds on X,

IV, Vol + V,([VL1€°) + Hy V' =0, (54)

with, moreover, (£ - £)[V,] = 0. Similarly, we see from (47) that a regularly discontinuous
2-tensor T is a weak solution if and only if it is a solution on each side of the discontinuity
hypersurface, and the following compatibility condition holds on X,

IV, Tl + Vo ([Topl?D) + (Hao T g+ Hpo T + 2Haops T ) =0 (55)

and, moreover, (£ - £)[T,g] = 0. We note that in any case we must have (£ - £) = 0 for the
discontinuity to be present (otherwise the jump is null and the discontinuity hypersurface is such
only for the derivatives of the field). This means that, as expected, discontinuity hypersurfaces
for the wave equation must be characteristic, i.e. lightlike (just like the characteristics of the
Einstein equations).
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For vectors and tensors we, moreover, note that compatibility conditions also involve the
mean value of the field on the discontinuity hypersurface, and not only its jump, like in the
case of ordinary functions. This seems to be a novelty due to the generality of the present
approach. This kind of contribution disappears if the metric is C'.

We have examined in some detail the particularly significant cases of functions, vectors
and 2-tensors; turning to the general case of a regularly discontinuous p-tensor 7, p > 0,
again we obviously find the characteristic condition (£ - €)[7,..e,] = O, plus the following
compatibility condition:

We thus have proved the following theorem.

Theorem 1. A regularly discontinuous tensor field T is a non-trivial weak solution of the wave
equation ATP = 0 if and only if ¥ is characteristic, T is a solution of the wave equation in
the ordinary sense on each side of ¥ separately, and compatibility condition (56) holds.

5. Singular solutions of the wave equation with support on a hypersurface

Let u be a singular distribution; we say that u is a singular solution of the wave equation if it
satisfies such equation in the sense of distributions. Let us consider singular distributions with
support on a hypersurface X, with the following expression:

U=yds. (57)

Such kind of distribution defines a field concentrated on X, where the scalar field y €
CH(Q),h >2,is the singular (here unique) component of the field.

The choice to consider y as defined (and regular) in a neighbourhood of X is clearly
helpful for handling with differential operators. However, since the value of u on a generic
test function is influenced by the restriction y |y of ¥ on X only, one may legitimately demand
that a singular field with support on X should have its component y defined on ¥ only. In
this case, our choice can be viewed as an operational choice if we assume that the values of
y, and also those of its derivatives up to order 2, are well defined on X only, so that, however,
it is possible to consider arbitrary regular prolongations y € C"(Q) (provided their values
coincide on X, together with those of their derivatives). The differential equations we obtain
in the following for y then have two possible interpretations: (a) only their restriction on ¥
(where differential operators on X follows the definitions of section 2.2) properly holds; (b)
they actually select the prolongation, or a class of admissible prolongations.

We can in any case handle differential operators applied to concentrated fields, thanks to
(17) and to the following similar formula for the derivatives of 8%,

Vs = €85, (58)
which involves a further singular distribution with support on X, denoted by §5.. Let us see
that (58) holds; in a generic chart, by derivation of (17) we have

Vo Vpds = Vel g8y + £, Vps,. (59)
The left-hand side of the above formula is symmetric with respect to the pair of indices «

and B since 8y is a scalar-distribution. On the right-hand side, V£ is symmetric, since £ is a
gradient and ¢ is C2. Thus we have

0 Vg8 = LpV,bl. (60)
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Since X is regular and £ is non-null, we can fix an index, say &, such that £; # 0. We then
have

V85 = Lpls ™ V5. (61)

Thus we have that the expression £, 'V, 8% is invariant with respect to the choice of & such
that £, # 0, and we can use it as the definition of the distribution 8% ; therefore (61) now
reduces to (58), as wished.

Moreover, it is easy to see that 8% is also independent of 8y and 8% in the sense of
section 2.4.

We can now apply (17) and (58) and obtain

A(ydz) = Ayds + (L°V,y + V,(y€7)d5 + (€ - O)y 5. (62)
Therefore the wave equation for our concentrated field

A(yds) =0 (63)
is equivalent to the following set:

Ay =0, PV, y + V,(y L) =0, -0y =0. (64)

We thus have proved that yJy is a singular solution of the wave equation if and only if
y is a solution of such equation (in a neighbourhood of ¥) and, moreover, the following
compatibility condition holds:

0V, y +V,(y") =0. (65)

Moreover, since (£ - £)y = 0, the singular hypersurface ¥ must be characteristic, otherwise
y = 0 and our solution vanishes.

Similar considerations hold for the case of a singular concentrated vector solution V,dyx;
we have the following compatibility condition,

€V, Vo + Y, (Vol?) =0, (66)

and (£ - £)V, = 0. For the case of a singular concentrated 2-tensor solution 7,885 we again
have

0V, Top + VY, (Typl?) =0 (67)

and (£-£)T, s = 0. Finally, in the general case, for a generic concentrated tensor of order p > 0
again we find the characteristic condition (€ - £)T,..,, = 0, plus the following compatibility
condition:

VT + Vo (T, £°) = 0. (68)

In particular, in all cases we find that ¥ must be characteristic in order for the singular solution
to be non-trivial, and that, different from weak solutions, for singular solutions the curvature
tensor-distribution is not involved in the compatibility conditions. We thus have proved the
following theorem.

Theorem 2. A concentrated tensor field T 85, where T is a p-tensor field of class C" (), h > 2,
is a non-trivial singular solution of the wave equation A(Téx) = 0 if and only if ¥ is
characteristic, T is a solution of the wave equation in the ordinary sense in a neighbourhood
of T, and compatibility condition (68) holds.
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6. The wave equation with source: an application to electromagnetism

6.1. Maxwell equations and the wave equation

Let us consider the relativistic Maxwell differential system,
Vip Fup) = 0, Vo F* = JP, (69)

where F is the electromagnetic field tensor and J is the charge-current vector, which is
conservative

VeJ* =0. (70)

The unit volume 4-form (Ricci antisymmetric tensor) n = 4/|g|e, where € is the Levi-Civita
indicator, permits us to define the antisymmetric dual of a given antisymmetric 2-tensor in a
standard way. The dual of the electromagnetic field is

F)* = (1/2)n*F o F"". (71)
The dual operator is involutive. Some useful properties of n are

(l/z)napkp,r/ﬁpou = 8ap8ulo 8vir T 8rp8alo8vin t 8uB8ilo 8vix

(72)
A/ D630 ap = 8ua8rp — 8ra8up-
Consider V, (xF)*?; from (72), we have the following identity,
ng"7" Vo (kF)* = (1/2)0P7 70 6" Vg F
= VPF°Y + VO F"" + VY F° (73)

and similarly for ng”°"V,F*, replacing F with (xF). Consequently, an equivalent
formulation of system (69) is as follows:

Vo (+F)*5 =0, VoF =JP. (74)
Now from identity (73) we have
gV, V(% F)*P = V,VPF7 +V, V7 F"" +V,VY F?.

Using the Ricci formula for the inversion of iterated covariant derivatives and the antisymmetry
of F, we equivalently have

np YV, Ve (xF)? = (AF)°Y + VOV, F"’ + V'V, F°
and similarly for ng?’"V,V, F ap replacing F with (xF). Now if (74) holds we have

(AF)°Y =V°JY — V7 ]J° (75)
or, equivalently, in terms of (xF),
[AP)] =7V, J,. (76)

In case (74) holds, the equivalent relations (75) and (76) are identities. However, each of them
as a differential equation is also equivalent, in a sense, to system (69). In fact, if we denote
DP =V, (xF)* and EP = V,F% — JP, they satisfy the following conditions, as we will see
in what follows:

(AD), =0, (AE), = 0. a7

Now, since A is a linear hyperbolic and self-adjoint operator, if we work in the framework of
tensor-distributions with a compact support (or, more generally, in that of tensor-distributions
with a past compact (future compact) support, see [1, 15]) we have that (77) implies E = D =0
(see [1, 14—16]). If we instead work in the framework of regular C* ordinary functions, in the
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domain of a fixed local chart, from (77) we again have that if D and E are null at a given initial
manifold (i.e., if the Maxwell equations (69) hold initially) then D = E = 0 always [15]. In
any case this means that solutions of (75) (or, equivalently (76)) are solutions of (69). This is
a (heuristic at least) reason for adopting (75) as a possible alternative to Maxwell equations.
And, in fact, in the following we will study weak and singular solutions of (75) according to
the theory stated above. Let us now see that (77) hold; we have

nPP°Y Dy = VP FV + VY F° + VO F7P
and from (75) nf?°V,Ds = 0. By saturation with 7,,** we thus have VI*D#l = 0.
Consequently, D is a solution of the equation (AD)* — V#V, D* = 0, and since D is

divergence-free, it is also a solution of equation (77);. Similarly, from the equivalent
equation (76) we can show that we necessarily have (77),.

6.2. Discontinuous electromagnetic field without source

Let us consider (75). If J = 0 the electromagnetic field is radiative, i.e. it satisfies the
homogeneous wave equation. In such a case, we can consider weak electromagnetic solutions
characterized by a regularly discontinuous F such that

A(Fup)? =0, (78)

which from theorem 1 must have a characteristic discontinuity hypersurface (wavefront) X,
and a compatibility condition of the kind (55) holding on X,

CP[V ) Fugl + YV, ([Fuplll) + Hy F g+ Hp  F o' + 2Hyop - = 0. (79)

Such a condition explicitly involves the singular component H of the curvature tensor-
distribution, therefore (79) governs in a sense of the general interaction of electromagnetic and
gravitational shocks; however, if a gravitational shock wave is present with X as wavefront
(and no stress—energy is concentrated on X), then Hyg,, # 0 and H,g = 0, thus we have

PV, Fopl + V([ Fopl®]) + ZHMﬁVFGV =0. (80)

In the following, we will consider a weak electromagnetic solution with a non-null
(generalized) charge-current source. This can be treated quite easily with our method, with the
obvious appearance of additional terms. For a regularly discontinuous charge-current vector
J we have, from (24),

Va(Jp)? = V5(J)? = (Vadg — V)P + (LalJg] — L5 10)5. (81)
and for a concentrated charge-current component J Sy, from (17), we have
Vo (Jg85) — Ve(Jads) = (Vad s — Ve Jo)8s + (Lad g — L5 J o) 8% (82)

The condition of conservation (70), imposed on J D and J , implies that J is conservative
at each side of ¥ separately, that J is conservative in a neighbourhood of X, and that the
following conditions hold at X:

[J ]¢* =0, Jol® =0. (83)
On the other hand, for a regularly discontinuous electromagnetic field F we have, from (47),
A(Fup)? = (AFup)® + (LP[V, Fupl + V([ Fopt”1))85

+(Ho, F 5+ HpuFo' + 2Hoopo F )85 + (£ - O)[FaplSs.. (84)
Similarly, for a singular electromagnetic field F'8y we have

A(Fopds) = (AFp)85 + (£°V  Fop + YV, (Foplf))85 + (- ) Fopdl.  (85)
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6.3. Discontinuous electromagnetic field with discontinuous source

In the presence of regularly discontinuous charge-current, we define F as a weak solution of
equation (75) if we have

A(Fup)® = Vo (Jp)P — Ve(J)P. (86)

Therefore, from comparison of (81) and (84) we have that in this case F is a solution of (75)
on each side of X separately, that the discontinuity hypersurface X is characteristic, and that,
moreover, the following compatibility condition holds on X:

CPIVy Fupl + Vo[ Fapl?1 + 2Hyio F ' g1+ 2Huop B = LalJp) — Lol Jal. (87)
Therefore, if a gravitational shock wave is present, we have
0PIV Fapl + Vo[ FaplP1+ 2Hoopu F' ' = Lol Jp) — L5 ), (88)

which corresponds to Lichnerowicz’s propagation formula (IV.8.6) in [4], where it was
obtained directly, starting from the Maxwell equations and using harmonic techniques; this
correspondence is a test of physical significance that our method has successfully got through.

6.4. Discontinuous electromagnetic field with singular charge-current

If instead the charge-current is concentrated on the hypersurface X, we cannot discard the
further interaction components which appear in (87), since in this case we have Hy,g # 0. A
regularly discontinuous weak solution of equation (75) is in this case defined by

A(Fup)? =V, (Jp85) — Vs(J485), (89)

and from comparison of (82) and (84) we find that F is a solution of the wave equation AF = 0
on each side of X separately, and that on ¥ we have

v A

CPIV ) Fupl + V[ Fupll] + 2Hyo F gy + 2Huopo F' = Vad g — Vo,

" A 90
(€ OFup] = tad s — T ©0)

In particular, ¥ is not necessarily characteristic in this case; this means that the singular
electromagnetic source shell can evolve in time according to the causality condition.

6.5. Singular electromagnetic field with singular charge-current

Finally, let us consider the case of a singular electromagnetic field Fdx corresponding to a
singular charge-current, J8y:

A(Fupds) = Vo(J p85) — Vp(Judx). 2]

From comparison of (82) and (85) we have
AFos =Volg— Vg, OV, Fop + YV, (Fopll) = Lo T g — LgJy, (- 0F.5=0.
(92)

In particular, again ¥ must be characteristic in order for F to be non-null. More
general situations, involving electromagnetic fields and charge-currents with both a regularly
discontinuous component and a singular component, and even with the presence of more
singular components like those along §%, can be studied along the same lines.
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